Developing a groundwater quality monitoring program for shale gas plays

Bernhard Mayer

Applied Geochemistry Group, Department of Geoscience University of Calgary, Alberta, Canada

Introduction

Shale gas development in Canada (and elsewhere) is often affected by the public controversy between the rapidly expanding exploitation of unconventional oil and gas resources by industry facilitated by horizontal drilling and hydraulic fracturing and the fear of landowners and parts of the public that these activities may have a negative impact on the quality of groundwater in shallow aquifers.

Introduction

Negative impact on shallow groundwater may occur, among others, from:

- · stray gases (methane etc.)
- · formation waters (flow-back water)
- · fracking chemicals used during hydraulic fracturing

There is an astounding lack of high-quality scientific data in the peer-reviewed scientific literature on groundwater quality in the vicinity of oil and gas wells

Closing this science gap could be highly beneficial for the responsible development of shale gas plays

Objective

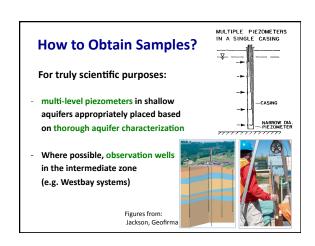
to discuss the key components of potential groundwater monitoring programs
that are suitable to generate scientifically defendable data for testing of impacts, or the lack thereof,
of shale gas development on the quality of groundwater in shallow aquifers

Essential Components

of a Robust Groundwater Monitoring Program

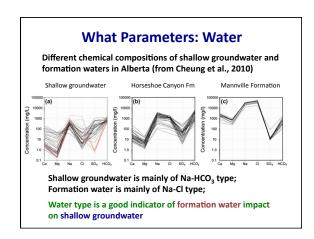
- to generate a scientifically defendable baseline prior to drilling and hydraulic fracturing against which future impacts can be compared;
- to continue groundwater quality monitoring during and regularly after hydraulic fracturing to test for potential detrimental impact on shallow groundwater

Key Questions

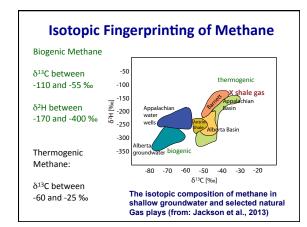

- 1. Which samples should be obtained?
- 2. How should the samples be obtained?
- 3. Who should obtain samples?
- 4. What parameters should be analyzed?
- 5. Where to obtain samples?
- 6. How often should samples be obtained?
- \dots to monitor for potential impacts on shallow groundwater from:
- stray gases (methane etc.)
- · formation waters (flow-back water)
- · fracking chemicals used during hydraulic fracturing

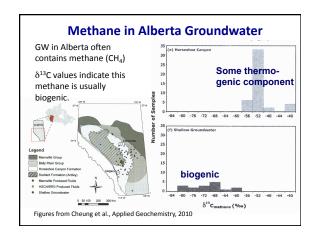
Which Samples? 1. Water samples for analyses 2. Gas samples for analyses a. Free gas samples b. Dissolved gas samples Under some circumstances, sampling for both may be desirable Under some circumstances, sampling for both may be desirable Fig.: Dissolved gas stability flow thank based on data from Yalowski & He (2003)

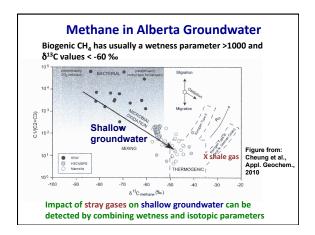
a. Free gas samples - targeted towards risk of explosions in houses etc. - different sampling setups may yield different yields/results - different consultants may generate different yields/results - ensuring comparability of results requires great care b. Dissolved gas samples - easier to sample by trained staff - analytically more challenging - results may be more comparable - results only representative for samples at or below saturation Fig.: Dissolved gas stability field

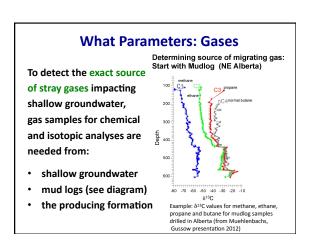

for methane based on data from Yalowski & He (2003)

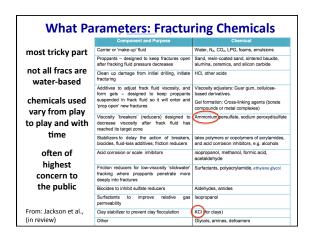
How to Obtain Samples? Widely used practice: landowner wells Rationale: to ensure the landowner that the groundwater quality is not negatively affected Landowner wells: - may be poorly maintained - may have long screen intervals can lead to mixing of groundwater with different chemical compositions - may result in erroneous data especially for redox-sensitive species




What Parameters: Water Groundwater, but also formation water, flow-back water Field parameters: temperature, pH, electr. conduct., Eh, dissolved oxygen (DO), turbidity, total alkalinity Laboratory analyses: major cations: Ca, Mg, Na, K, NH4 major anions: Cl, HCO3, SO4, NO3, F minor ions and trace metals: Fe, Mn, As, Ba, B, Cr, Se, U etc. organics + dissolved gases: BTEX, C1 – C5 Calculated parameters: total dissolved solids, ion balance


	osition of wated to "average"	•	d shale gas	
Analytes (mg/L)	Fayetteville	Marcellus	Barnett	Alberta Groundwater
→ Na	5363	24445	12453	378
Mg	77	263	253	80
Ca	256	2921	2242	26
→ Sr	21	347	357	0.4
Ba	0.8	679	42	0.1
Mn	0.5	3.9	44	0.1
Fe	28	26	33	0.5
SO4	149	9.1	60	185
HCO ₃	1281	261	289	735
→ Cl	8042	43578	23798	77
→ TDS	15,219	72.533	39.570	1037
Sp Gravity	1.01	1.05	1.03	1.00
Depth (m)	300-2000	1200-2600	2000-2600	<100




What Parameters: Gases CH₄, C₂H₆, C₃H₈ etc. CO₂, N₂ ... wetness parameter: Concentration of CH₄ Concentrations of C₂H₆ + C₃H₈ + etc. isotopic composition: δ¹³C of methane, ethane, propane δ¹³C of butane and pentane (if available in sufficient concentrations) δ²H of methane

What Parameters: Fracturing Chemicals

Unless spilled from the surface, fracturing chemicals will be introduced into shallow aquifers via flow-back water

→ Monitor for contamination from flow-back & formation water first; if detected test for fracturing chemicals more specifically;

Knowledge of the fracturing chemicals that are actually used at the site is essential for selecting appropriate monitoring parameters

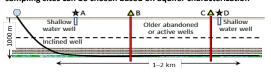
What Parameters: Fracturing Chemicals

Potential parameters for regular monitoring that may indicate impact from fracturing fluids:

- Some cations or anions (NH₄, K, possibly SO₄²-)
- TOC as bulk parameter for organic contaminants
- possibly selected organic compounds (e.g. BTEX, glycols etc.)

Once impact of fracturing chemicals on shallow groundwater is suspected, more detailed analysis for fracturing chemicals (borate compounds, acrylamides, isopropanol, methanol, surfactants, biocides etc.) and their degradation products should be initiated on a site-specific basis.

Where to Obtain Samples? What are the most likely leakage pathways? From surface From subsurface Shale gas well Treatment facilities Townscript facilities Townscript facilities Treatment facilities Townscript faci


Where to Obtain Samples?

The question of testing radius around potential leakage sites (e.g. wells) is difficult to answer without proper aquifer characterization

Distance and even direction of impact may be different for stray gases and formation waters affecting shallow aquifers

For landowner wells, distances of up to 600 meter or ½ mile are often used (not based on solid scientific data)

For newly installed scientific sampling wells, properly selected sampling sites can be chosen based on aquifer characterization

Schematic diagram of shale gas well (from Dusseault et al., submitted). B,C are off-set energy wells. A, D are landowner wells included in monitoring program.

How Often to Obtain Samples?

Depends on specific objective

Minimum sampling frequency:

- Baseline sampling
- Sampling during hydraulic fracturing
- Sampling during production (after hydraulic fracturing) frequency: depends on objective

Leakage may occur many years after well construction and hydraulic fracturing

Long-term monitoring desirable

Conclusions

It is feasible to develop groundwater monitoring programs that are suitable to generate scientifically defendable data for testing of impacts, or the lack thereof, of shale gas development on the quality of groundwater in shallow aquifers

Establishing such programs requires, among others:

- · Willingness to design a scientifically sound monitoring program
- Collaboration between industry, academia & regulators;
- Sufficient funds to conduct this task thoroughly
- A long-term commitment to maintain the program for years

Outcome & Benefits

The beneficiaries will include:

- Regulators who are responsible for ensuring landowners and the public that the groundwater quality is protected;
- Industry that will have data on groundwater quality that demonstrate the extent of impacts on shallow groundwater; and
- The public that will be assured that scientific data are being collected that are suitable to monitor the quality of its freshwater resources in aquifers.

Contact

Bernhard Mayer

Applied Geochemistry Group, Department of Geoscience University of Calgary, Alberta, Canada

E-mail: bmayer@ucalgary.ca
Phone: 403 220 5389
http://earth.geo.ucalgary.ca

